WITTMANN BATTENFELD celebrates its birthday!
Articles that appeared in WITTMANN innovations so far

Injection Molding

• Injection molding one stop shop 4/2008
• MIN at Indo-US MIM 4/2008
• The new TEMPRO plus C series 4/2008
• COOLMAX cooling units 2/2008
• TEMPRO®guarding™ 4/2009
• TEMPRO® with DUO cooling 4/2009
• Variothermal temperature control 4/2009
• TEMPRO plus CI90 2/2009
• TEMPRO direct injection 4/2016
• WFC Water Flow Control 4/2009
• TEMPRO plus CI90 1/2010
• The new injection moulding machines 2/2010
• BFMOLD® mold cooling 3/2010
• Online-thermography 1/2011
• Tempering at Fuchs & Sohn 2/2011
• TEMPRO plus D in automotive 4/2012
• Oscilloscope function 2/2012
• Optimal tempering – quality 1/2013
• The Starlinger special solution 2/2013
• New WITTMANN equipment 4/2013
• TEMPRO uses heat waste 1/2014
• Clean solution at DELPHI 4/2014
• Blum using a special solution 1/2015
• The new FLOWCON plus 4/2015
• TEMPRO plus D at Fischer (D) 1/2016
• Ref: retrofit kit is available 2/2016
• FLOWCON plus at COLAP (A) 3/2016
• TEMPRO plus DB80 at Werbel 4/2016
• The new TEMPRO basic CI0 1/2017
• Rejlek Group uses TEMPRO 3/2017
• TEMPRO plus DB4 with Speedrive 4/2017
• Water: high-temperature medium 4/2017

Flow Control / Temperature Control

• Advantages of pulsed cooling 1/2007
• Comparing water vs oil 2/2007
• The new TEMPRO plus C series 3/2007
• COOLMAX cooling units 2/2008
• TEMPRO®guarding™ 4/2009
• TEMPRO® with DUO cooling 4/2009
• Variothermal temperature control 4/2009
• TEMPRO plus CI90 2/2009
• TEMPRO direct injection 4/2016
• WFC Water Flow Control 4/2009
• TEMPRO plus CI90 1/2010
• The new injection moulding machines 2/2010
• BFMOLD® mold cooling 3/2010
• Online-thermography 1/2011
• Tempering at Fuchs & Sohn 2/2011
• TEMPRO plus D in automotive 4/2012
• Oscilloscope function 2/2012
• Optimal tempering – quality 1/2013
• The Starlinger special solution 2/2013
• New WITTMANN equipment 4/2013
• TEMPRO uses heat waste 1/2014
• Clean solution at DELPHI 4/2014
• Blum using a special solution 1/2015
• The new FLOWCON plus 4/2015
• TEMPRO plus D at Fischer (D) 1/2016
• Ref: retrofit kit is available 2/2016
• FLOWCON plus at COLAP (A) 3/2016
• TEMPRO plus DB80 at Werbel 4/2016
• The new TEMPRO basic CI0 1/2017
• Rejlek Group uses TEMPRO 3/2017
• TEMPRO plus DB4 with Speedrive 4/2017
• Water: high-temperature medium 4/2017

Conveying / Drying / Entire Systems

• Central system at Bosch 1/2007
• Quality control of dryers 1/2007
• The new TEMPRO plus CI90 1/2007
• Cost efficient material drying 2/2007
• FEEDMAX for the new CI90 1/2007
• The new DRAYMAX ED60 3/2007
• Focus on material feeding 1/2009
• Network control at Argo 2/2008
• Optimizing a conveying system 1/2008
• Dryers with energy rating 3/2008
• The Netzsch central systems 2/2009
• Auxiliaries at Delphi in China 1/2009
• ISU COMPOSITES’ centring 2009
• Planning of central systems 2/2009
• Testing energy claims at FKT 4/2009
• The new FEEDMAX T 48 and 90 4/2009
• Greiner’s dryers saving energy 2/2010
• The A.C.S. conveying system 1/2011
• FEEDMAX Primus conveyors 4/2010
• The new DRAYMAX Atom 2/2011
• The RKF conveying system 2/2011
• K60 Kunststofftechnik system 4/2011
• PET Processor’s conveying 1/2012
• The PLASTICOM system 2/2012
• NIFP injection moulding 1/2013
• Saving energy in material drying 2/2012
• The Regal-press material handling 2/2012
• Vision Technical Molding 3/2013
• In-Mold injection moulding 2/2013
• New Pollmann central system 2/2014
• The HELLA Mexico system 3/2014
• The Procop system, France 3/2014
• The SLM material management 4/2014
• WITTMANN in Slovenia – Alliance Precision Plastics, USA 2/2015
• Our Spanish customer Fuchina 2/2015
• Injection Molding at Turide 2/2015
• The Wiha QuickLook App 2/2015
• BANK plastic central systems 4/2015
• Johnson central system (China) 1/2016
• Drying at Lek Sun (Malaysia) 3/2016
• GÖTTERM system (Brazil) 2/2016
• The Havells (India) 1/2017
• FC plus module for dryers 1/2018
• Axjo + BATENFELD Sweden 1/2017
• The zero REINERT central system 1/2014
• The PT. WIK central system 3/2017
• The new ATON plus H 3A Plastics (I) central system 4/2017
• The NIFP central system (CZ) 1/2018
• Stadtelma, Austria: energy saving 2/2018

Automation / Control Technology

• Medical production and control 1/2007
• Large structural foam components 2/2007
• The new BB robot control 1/2008
• High-end: Seat adjustment rods 4/2008
• Drive electronic for robots 1/2008
• Transponder pin production 2008
• Automated remote control keys 3/2008
• Automation at Carbo, Brazil 3/2008
• The flexible automation cell 1/2009
• Growth with robots 2/2009
• Bruder toy production wheel 4/2009
• Pallet production at Utz, Poland 1/2010
• EcoMeal for efficient charging 4/2010
• Automated oil level sensors 2/2010
• Automated rotation wheel 2/2010
• The new RR.2 robot control 4/2010
• Linear robots in the clean room 4/2011
• Super-fast part removal 2012
• Automation of cups and lids 2/2013
• New multi-purpose central systems 3/2013
• Automation inserting molding 4/2013
• The expert automation of lid 2/2014
• LSR parts at Silrotech (CH) 3/2014
• Zero reject production 4/2014
• Smallest parts at JOENOTIK 2/2015
• The Schumacher automatic 1/2015
• The Busch-Jaeger automation 1/2014
• Automating In-Mold Decoration 2/2014
• Automation at Port Erie Plastics 3/2014
• Automating STAR PLASTIC 4/2014
• Jones Plastic and WITTMANN 1/2015
• Robots at Greendale Singapore 2/2015
• SEB tandem robots (B) 2/2015
• The Sadik automation (I) 3/2015
• Automation in Korea 4/2015
• Surabs India and WITTMANN 4/2015
• IML special solution (B) 2016
• Innovare in Indonesia 2/2016
• 2 robots at Samwa, Singapore 2/2016
• KOMBI-PACK automates IML 4/2016
• ja jy Muns automation 4/2016
• Digital robot twin 4/2017
• Cyber security 4/2017
• PLASSON’s robots in Israel 1/2018
• WITTMANN 4.0 Flag & Progress 2/2018
• Green, China, has 180 robots 2/2018
• Intertechnics WITTMANN robots 2/2018
• White Horse Plastics (I) 4/2018

Granulation / Recycling

• Inline recycling of sprues 1/2007
• Giant granulator MCP 100 2/2007
• The new MAS granulator 3/2007
• Challenging recycling process 1/2008
• Inline recycling of sprues 1/2008
• STC 78-80 at Centres: 2/2008
• Gilo Plast enters recycling 2/2009
• MC granulators with AuF 4/2009
• Cutting of ferrous 1/2010
• Grinding critical material 3/2010
• The TM-CONVERT solution 4/2011
• Inline recycling with Minor 2/2011
• Granulation under the press 2/2012
• Large solutions for large parts 1/2013
• Minor 2 at JECOBEL, Belgium 2/2014
• WITTMANN 4.0 X 3 Company Austria 3/2014
• ARaymond and the G-Max 33 1/2017
• Liebherr Bulgaria central system 1/2018

WITTMANN innovations (Volume 12 – 2018)

Quarterly magazine of the WITTMANN Group. The magazine appears to meet the informational demands of staff and customers.

Address: WITTMANN Kunststoffgeräte GmbH, Lichtblaulerstrasse 10, 1220 Vienna – Editorial office, layout, graphic production: Bernhard Grabner – tel.: +43-1 250 39-204, fax: +43-1 250 39-439 – e-mail: bernhard.grabner@wittmann-group.com

Issue 4/2018 of “WITTMANN innovations” will appear at the beginning of the fourth quarter 2018. – www.wittmann-group.com
Dear Reader,

What began ten years ago with the integration of BATTENFELD Kunststofftechnik into the WITTMANN Group has become an uninterrupted success story. Previously, both companies had already followed the principle of continuous improvement by innovation in processing technology. WITTMANN had experienced continuous growth over many years, while BATTENFELD was facing the possibility of having to disappear from the market due to corporate restructuring.

The takeover effected on 1 April 2008 – which led to the revival of BATTENFELD – now under the umbrella of the WITTMANN Group – could be compared to the rebirth of the phoenix from the ashes in terms of symbolism. Admittedly, this sounds rather melodramatic, but the events which led up to the takeover were certainly turbulent. It was due to the ever-present strategic decisions made in the background that such a successful project could emerge from this takeover.

The overriding strategy from the very beginning was to focus the strength of both companies on offering you special advantages from using our products and services. On the one hand, by the use of individual high-performance products as parts of a comprehensive product portfolio, on the other hand, through the additional benefit created by the high integration potential of all components. Moreover, in a family-owned business with a long-term perspective like ours, you can count on having a reliable partner for many years to come.

Under the brand name of PowerSeries, the last ten years have seen a revision of the entire range of machinery. The PowerSeries models stand for sturdiness, maximum productivity, outstanding energy efficiency and optimal user-friendliness. From the beginning – even before the Industry 4.0 concept became a guiding theme – our goal of harmonizing the control systems of the machines, automation equipment and peripherals was a major concern, that is the endeavor to connect up all components virtually without interfaces. Today, all modules of an injection molding production cell can be integrated under the one roof of WITTMANN 4.0, which is an essential prerequisite to fulfill the requirements imposed on a SmartFactory according to the Industry 4.0 principle.

Our facility in Kottingbrunn, Lower Austria, is now presenting itself in a new outfit. Our great success has made it necessary to expand the production floor of the machine manufacturing plant once more. As a part of this most recent building project, the office building has also been extended together with optimizing the assembly processes. We are looking forward to welcoming you in Kottingbrunn!

Yours cordially, Georg Tinschert
When matching the technology of injection molding of thermoplastic polymers on one hand, and the sintering of metal powders on the other, one gets to MIM technology (Metal Injection Molding). This is a process that optimizes the development of particularly complex objects with complicated shapes, including those that would be hard to realize through metal casting.

The first MIM applications took place more than 35 years ago in the IT industry, and even though it cannot be considered as a new technology, it is not very commonly applied.

Today, the main volume happens in the UK, the Far East and in India, followed by Europe (as an accessory matter of the automotive industry).

An all-Italian challenge

In 2005, four engineers that specialized in metallurgy, plastics engineering, mechanics, and design, decided to get together and share their skills and abilities to set up a company called Mimest in Trento (Italy). There were several reasons for this ambitious decision: “First of all, we wanted to put our skills into practice professionally. Then we wanted to approach a technology that was still not completely explored,” explains Matteo Perina, the Managing Director.

The years went by and the company, led by Matteo Perina and Rudj Bardini, the Technical Director, grew bigger, becoming stronger and stronger in the special field of MIM technology. “Growing was a slow and gradual process,” Perina adds. “In the beginning, we invested in knowledge about the production process, and also in the development work of special machinery for the optimization of powder mixing.”

Then the qualitative leap followed, we purchased the raw material directly from the wholesaler. Several investments then took place: the extension of the plant, the purchase of some injection molding machines, and also the purchase of two special ovens in order to have two different production lines and to be able to increase the quantity of the final products – and, as a consequence, also the sales figures, of course.”

Today, the Mimest company has gained pretty much experience with a very wide range of different materials, including steel, bronze, titanium, and many other metals. Last but not least, the production volume achieves 1 million parts a year.

Mimest, Italy: the perfect synthesis

Technology, labor, and an ongoing trend. – The history of an Italian company that was able to get ahead in the niche market of metal injection molding.

Stefano Troilo
Choosing the MIM technology

The MIM technology allows for the creation of objects in metal alloy with amazing mechanical and appearance characteristics.

It takes full advantage of injection molding, in particular of its high productivity, freedom of geometry, and lightness. Another advantage is the following: when the finished parts’ weight ranges from a few grams to 300 grams, there is no need for mechanical and thermal treatment or surface finishing. “It is a highly competitive technology compared to traditional casting processes, especially when complex geometries or difficult materials come into play. But to amortize the cost of the mold, optimal production often has to be based on volumes of no less than 10,000 pieces,” explains Rudj Bardini.

Another interesting detail is that it is possible to produce very small components with aesthetic requirements and very tight tolerances. “A significant project in this sense, for example, concerns the production of hinges and aesthetic micro-parts for a well-known brand of eyeglasses,” says Bardini.

One process, three steps

The MIM production process consists of three steps, which include molding, debinding, and sintering. Adding up all of these three steps equals the cycle time of the whole process. From starting the entire working process to the extraction of the first parts for the eyeglasses took approximately three days, while the average lead time of this process is four weeks, without any further surface treatments.

“The injection molding process as such is the one step with less impact on the cycle time”, Bardini explains. “For example, the already mentioned micro-parts for the optical sector required a molding cycle time of only 15 seconds, using a 4-cavities mold.”

Step 1: Molding

Apart from the screw, the cylinder and a few other accessories, the injection molding machines are the same as those used for the molding of plastic parts. Mimest’s MIM equipment consists of a WITTMANN BATTENFELD EcoPower 55 injection molding machine, equipped with a special MIM/CIM package. The choice of an all-electric machine was made not only because of the possible energy savings, but primarily in considering the strict quality requirements. Only an electrically driven injection unit can guarantee the highest degree of repeatability, which is absolutely crucial for the MIM process. In addition, the sensibility of an electric machine’s clamping unit and ejector helps to protect the relatively sensitive so-called green parts.

The raw material that is used comes as a mixture of a binder, polymers, wax, and also metal powder that consists of spherical particles with a diameter of 20 micron. These particles represent 92% of the whole feedstock. The material is injected into the mold, where it reaches temperatures ranging from 60–80 °C, but never its melting point. Rudj Bardini explains: “The spherical shape of the metal powder particles avoids the abrasion of the mold. And on the contrary to what one may think, the metal’s consistency is rather fragile compared to that of plastic. The molded – or green parts, as we call them – are rather fragile, thus it becomes necessary to furnish the mold with more and bigger ejectors. The removal of the parts is carried out by a robot that...
also manages the separation of the parts from the sprues when both are lying on the conveyor belt.” When processing MIM parts, a robot becomes absolutely necessary. Normally, small molded plastic parts are ejected and are free to fall into a box or on a conveyor belt. The green MIM parts, however, are even more sensitive than glass parts, and thus it is impossible to simply let them fall down. Parts removal from the mold is critical. Here, the WITTMANN robot’s control is particularly helpful, offering the possibility of fine-tuning adjustment of the respective parameters, enabling the gentlest part extraction possible. Furthermore, to avoid parts damaging, precise monitoring of the gripper vacuum is necessary. Thanks to analog Venturi vacuum regulation, every single cycle can be monitored, and it can be ensured that all the parts are completely and correctly extracted from the cavities. The new WITTMANN R8.3 robot control comes equipped with this feature, a highly convenient and helpful tool.

WITTMANN BATTENFELD offers to its customers fully integrated solutions of injection molding machine and robot, allowing for the reduction of the necessary footprint. The complete working cell is CE identified, and machine and robot also come with a data saving function. Intelligent control features – like the SmartRemoval function – considerably reduce the cycle time.

Step 2: Debinding

Green parts are then immersed in a solvent for a variable amount of time, according to their sizes. “This step, called primary debinding, permits the removal of one of the polymer elements of the binder – representing 4–7% of the volume – that in the first step helped to facilitate the filling of the cavities”, says Rudj Bardini. Afterwards, the parts are put into an oven at 650 °C, undergoing the secondary debinding.

Step 3: Sintering

Now the parts are put into a sintering oven, where they obtain compactness. Depending on the metal alloy, the temperature in the oven can reach 1,400 °C. Compared to the finished parts, the molded green parts seem oversized. During sintering, the spherical metal particles are compacted, which leads to a reduction of the final parts’ volumes.

The green parts have the same geometrical characteristics as the finished parts, but bigger dimensions. They are by 15–20% bigger because they contain plastic and waxes. The green parts have to undergo a debinding (or dewaxing) procedure. They are immersed in solvent, and then dried for 10–12 hours in a hot oven that is under vacuum. After debinding, the parts pass into a sintering furnace where they obtain compactness. The finished part has excellent characteristics and aesthetic qualities, and requires no further finishing treatment.

Stefano Troilo is a photographer and external consultant of the Italian PLASTIX magazine to which he also contributes.

The green parts have the same geometrical characteristics than the finished parts, but bigger dimensions. They are by 15–20% bigger because they contain plastic and waxes. The green parts have to undergo a debinding (or dewaxing) procedure. They are immersed in solvent, and then dried for 10–12 hours in a hot oven that is under vacuum.
"First place" for WITTMANN BATTENFELD EcoPower and SmartPower

The Swiss company Prewag AG in Eschenbach-Neuhaus, canton St. Gallen, presents itself as a real model company. With its efficient production equipment, it manufactures technically sophisticated, high-quality products for well-known customers. The company operates with machines, automation solutions and peripheral appliances from the WITTMANN Group.

Thomas Robers

Anyone who has the opportunity to see the facility of Prewag AG immediately notices one thing – here everything is focused on top quality and performance, down to the smallest detail. An impression first gained from the modern, well-kept buildings and subsequently from the high-performance injection molding machines, which are all equipped with handling devices, and finally from the optimal arrangement of the machinery belonging to the various production units. You will not find any injection molding machines standing idle at Prewag. Here, "everything is up and running".

Prewag AG is a small, but excellent family-owned business, now managed jointly by the two brothers Guido and Roger Guggenberger in the second generation.

In 1992, their father Hermann Guggenberger had acquired the company, which originally processed thermosets by compression molding (the company name Prewag was also derived from the original “Presswerk AG”). Shortly afterwards, the two sons took over the management of the company and developed it to its present size.

Rapid growth

Production takes place today in two modern halls. The first of these halls was built in 2005 together with the office building. The site in the Neuhaus industrial area acquired for this purpose was situated right next to the “Oberland Motorway” and offered sufficient space for possible extensions. Before moving to this site, Prewag employed seven workers, now there are 25.

The extension hall built in 2016 was planned according to latest ecological and economic principles. The hall is fully air-conditioned and equipped with noise barrier walls and ceilings. Its southern external wall is completely covered with solar cells which supply the complete electricity demand of the hall when the weather is favorable. LED lighting in the entire building and energy-efficient injection molding machines from WITTMANN BATTENFELD make it possible.

The SmartPower injection molding machines in operation there are equipped with energy-efficient servo-hydraulic drives which shut down during residual cooling times. With the KERS (Kinetic Energy Recovery System) technology known from Formula One motor racing, the kinetic energy of the moving masses is recovered during the deceleration of all axes, while the hydraulic pump takes over the tasks of the motor and the servo-electric motor those of a generator. Moreover, these machines operate with a low-viscosity HLP32 oil.

This oil heats up much less strongly in operation than the previously used high-viscosity oils, so that less heat is generated and consequently less needs to be dissipated. In this way, the machines can often operate entirely without oil cooling, which leads to a significant reduction of power loss.
SmartPower machines are also very quiet. The speed-controlled servo motor/pump drive generates only as much hydraulic energy as required at the moment and sometimes shuts off completely. It is also very compactly encapsulated and integrated in the machine base, so that hardly any noise penetrates to the outside. Roger Guggenberger, in charge of production and technology at Prewag, comments jokingly: “We could have dispensed with the noise barrier walls and ceilings in view of the low noise level with which the SmartPower machines operate.”

The customer’s satisfaction with BATTENFELD, however, was not always as pronounced as it is today. The company founder Hermann Guggenberger had started off with machines from BATTENFELD, but their number had declined more and more in the 1980s and 1990s. Until the time when BATTENFELD had been taken over by WITTMANN, when the newly developed machines from the PowerSeries caught Roger Guggenberger’s attention, and he made use of the opportunity at the Fakuma 2011 for thorough inspection of an all-electric EcoPower. The excellent handling attributes and easy operation of the UNILOG B6 machine control system then in use made a very positive impression on him. Immediately after the fair, an order was placed for the first EcoPower 55. This machine was followed very rapidly by three SmartPower injection molding machines – and subsequently four more from the same series – with clamping forces ranging from 25 to 240 t. “The price-performance ratio is impressive. As far as I am concerned, the SmartPower and the EcoPower clearly take place one”, says Roger Guggenberger. The most recent delivery was a SmartPower 120 in spring 2018.

Broady based product range

Today, Prewag AG produces parts with a total of 27 molding machines, with rapidly increasing volumes. Orders, however, are not accepted at any price. Prewag specializes in premium-quality technical parts, in which the highly developed injection molding expertise accumulated here is brought to bear. As far as possible, more added value is created too, by additional services such as component assembly, printing, picking and packaging. The product portfolio includes design packaging for large watch manufacturers as well as technical parts for the electrical, sanitary installations, building construction, household goods, food and machinery industries, also parts for medical appliances and, most recently, dental equipment.

Quality, automation and refinement

In 2013, the company was granted certification according to ISO 9001:2008; Prewag is now also CO₂ certified. Special care is taken with the molds used in production.
A small stock of machinery for mold maintenance is available in-house. In the new building, a separate, air-conditioned fire shelter room has been installed to house the store of molds.

For quality inspection, a 3D coordinate measuring machine was recently acquired, with which both optical and tactile measurements can be carried out. The latest additions to the company’s equipment are a laser marking system and an automatic assembly machine. With the exception of a few small models, all machines are equipped with handling appliances or complete automation systems from the WITTMANN Group’s subsidiary in Switzerland. The most recently installed production cell to manufacture fully assembled design packages for one of the world’s largest watch manufacturers contains an EcoPower 240 injection molding machine and a W832 pro robot with the latest R8.3 control system, which is mounted on the machine, as well as a W818 assembly robot.

For peripherals, Prewag also relies on WITTMANN. In 2016, two 5-fold drying systems with ATON plus segmented wheel dryers were delivered. This equipment enables fully automatic cycles, which make it possible to operate the system continuously in three shifts including nights and weekends.

But there are also some smaller measures which contribute to the company’s efficiency – some not so spectacular, and some ingenious. For example, the machines are placed with a fixed side clearance of 1.4 m, as Roger Guggenberger explains. The material flow can thus proceed unhindered, access to the machines and peripherals is not restricted, and the result is an attractive visual impression.

An even more creative approach was required, when some persistent streaks on the surface of a molded part made of fiber-reinforced material could not at first be eliminated. The suspected cause was fiber glass dust in the raw material.

It was immediately decided to purchase a special dust extraction unit, a clever investment which actually helped to make those streaks disappear from the surface. A pleasant side effect was that the traces of wear showing on the parts of the machine and the mold which come into contact with the melt were significantly reduced.

Conclusion and outlook

With commitment, expertise, creativity and a certain amount of readiness to take risks, Prewag AG successfully is successfully maintaining sustainable growth in the highly competitive Swiss injection molding environment. For instance, 2017 turned out to be the best year so far in corporate history. And the prospects for the future are more than just good. •

Thomas Robers is the Managing Director of BATTENFELD Schweiz AG in Volketswil.
How Midwest has used robots from WITTMANN BATTENFELD

Everything in its place: with the help of their local WITTMANN BATTENFELD Tech Center, Midwest Molding has integrated their robot configurations into their vision for a fully optimized footprint on every machine.

Bob Arsenault

Midwest Molding Inc. is a family-owned, custom injection molder, specializing in producing high quality, complex manufactured components and assemblies. Established in 1996 and located in Bartlett, Illinois, about 30 miles west of Chicago, Midwest Molding primarily molds parts for the automotive industry. Plastics molding for the automotive industry is highly competitive, and to succeed, Midwest Molding has implemented lean manufacturing principles, maximized its square footage, and prided itself on accomplishing difficult tasks that other companies have turned away from.

Efficiency, efficiency!

Everything that Midwest Molding does starts from an efficiency mindset. They enthusiastically utilize lean manufacturing practices, and do everything possible to ensure as little downtime as possible. In 2005, after being awarded a new program that would require 2.2 million lbs. of resin, they began an in-house design of a new facility that would be custom-built to meet their company’s needs and to be as efficient as possible. It was an exceptionally energy-efficient building, with thick walls and ceilings to keep the extreme cold and heat of the Midwest at bay, and all the water and electrical was run underground to conserve floor space and make for easier addition of new machines as they grew.

The new facility was built in 2007, and the entire company moved into it in under one month, a startlingly fast move that proved to their customers that downtime was simply not an option for this company. Fortunately for Midwest Molding, they had diversified their work enough that when the Great Recession hit just one year after construction of a brand new headquarters, something that could have, and did, sink many other companies, they made it through with very few issues, even purchasing 17 new molding machines as early as 2010 to support new business. “We are committed to always meeting our customers’ expectations of us,” says Sanjay Patel, Director of New Business Development at Midwest Molding. “We swap out our IMMs every 7–10 years to ensure we are up-to-date on the latest technology and once we hit 70–75% utilization in our plant we buy a new machine. If we are close to 100% utilization, we are susceptible to downtime if anything goes wrong, and our customers have really loved our commitment to making sure we have that extra insurance to make sure that we won’t make excuses and downtime simply won’t happen.”

An assist from a local supplier

Once the new facility was up and running, business was booming for Midwest Molding, and they soon needed to expand their capacity and add more molding machines. After having already designed and built their brand-new facility in 2007, expanding or moving to a larger facility was a costly option, and they wanted to continue to be able to take advantage of the productivity-enhancing features of the building that they designed themselves.

By 2015, they knew they had to do something to allow for more efficient space usage, and with molding machines relatively fixed in the footprint they utilize, they invited in a WITTMANN BATTENFELD representative from the local South Elgin, Illinois Tech Center to research possible ways in which they could conserve space with their robots and automation. Every IMM at Midwest Molding included a robot, with zero manual picking done in the facility, so
they knew this was a process that, if improved, could reap substantial rewards. WITTMANN BATTENFELD was instrumental in helping Midwest Molding to make the most of the resources at their disposal and expand their efficiency mindset to include their machines’ footprints.

A simple switch

Midwest Molding had been using WITTMANN robots since 1999, and as a result had a strong relationship with the WITTMANN BATTENFELD employees from the local Tech Center. So, when they needed a solution on how to optimize their footprint, they called up Bob Arsenault, WITTMANN BATTENFELD’s Regional Sales Manager for Robots.

“Probably the biggest advantage of using the WITTMANN robots is the fact that Bob is right around the corner from us,” says Samir Patel, CFO/Controller at Midwest Molding. “If we need anything, he is always willing to come over and help us whether it’s a technical fix or a consultation on what we could upgrade.”

The solution that Arsenault, Patel, and the rest of the Midwest Molding team arrived at was a simple one. Instead of using the traditional mounts for the robots, which track outward from the IMM and necessitate multiple extra feet of floor space to the side of the machine, they would use L-mounts, which run the robot tighter to the machine, requiring less clearance and allowing the IMMs to be placed closer together.

This change, which seems relatively small and simple, reaped enormous benefits in terms of space saved, conserving over 50% on its footprint compared to the alternative configuration. Midwest Molding is now running 55 IMMs, and has the space to fit up to 25 more without any costly new construction. To ensure that they could still have the flexibility to take on the toughest jobs, Midwest Molding added the A/C-Servo flip and rotation wrist to all the new robots they purchased. This feature helps the robot make the most of the space it is given, providing a solution for complex jobs in tight areas.

More than just the footprint

The benefits of the WITTMANN robots continue beyond the smaller footprint, however, with some of the extra features that they provide adding even more efficiency.

“The programming on the WITTMANN robots is a real advantage,” says Mayur Patel at Midwest Molding. “The open architecture allows us to program complex, customized processes how we want them, and some of the built-in features like SmartRemoval and EcoMode allow us to easily ensure efficient, cost-saving usage of the robots. The robots are smart, which allows for less chance for human error. With EcoMode, if we lengthen the cycle time on a machine, the robot will automatically adjust itself to run more slowly and smoothly to save energy, as well as wear and tear, and not be needlessly rushing to sit at the mold and wait for it to open, and with SmartRemoval, the robot is tied directly into the machine processes and will enter and exit the mold in the most efficient and timely manner possible without relying on the operator to program that in.”

The WITTMANN BATTENFELD Tech Center being nearby has also provided added benefits to Midwest Molding beyond the spare parts and support, including ease of training. “We’ve seen at least 25% of their people come in to be trained at our South Elgin Tech Center,” says Bob Arsenault. “They really see the benefit of having their people get proper training to ensure correct use of their machines, and the fact that we’re right around the corner has made it easy for them to send their employees in to get top-notch training.”

“WITTMANN BATTENFELD really is a one-stop shop, and we really see the benefit of that,” says Sanjay Patel. “Not only are their robots easy to use, consistent, and solid, everything we have to do with them, from maintenance to training to upgrades, is easier when it’s all from the same supplier, and even more so when that supplier is local, friendly, and accessible.”

With increasing capacity and a commitment to zero downtime, Midwest Molding sees continued growth in their future, and with their commitment to efficient and high quality practices, the sky is the limit for what this molder is capable of.

Long view of Midwest Molding’s shop floor, with WITTMANN BATTENFELD robots on every molding machine.

Bob Arsenault is Regional Sales Manager Robots at WITTMANN BATTENFELD, INC. in Torrington, Connecticut, USA.
Natural fibers straight from the dryer

Moisture contained in the wood cell walls of WPC evaporates during the extrusion process and causes defects in the end product. These drawbacks can be eliminated by pre-drying the granulate. In a test series conducted by IFA-Tulln, the Institute for Natural Materials Technology at the University of Natural Resources and Applied Life Sciences in Vienna, a WITTMANN ATON dryer was used.

Eva Sykacek – Micha Poszvek – Paulina Rivière – Norbert Mundigler

Reinforcement of thermoplastic materials with wood flour or other natural fibers offers a number of advantages compared to the use of traditional fillers such as fiberglass or mineral reinforcing materials. Biobased fillers come from renewable sources of material and thus contribute to the sustainability of products manufactured from them. By comparison with synthetic fillers, natural materials have lower bulk densities, are CO₂-neutral, biodegradable and in most cases cheaper than artificial fillers.

Wood-plastic-composite (WPC) profiles are widely used today in outdoor and indoor applications, for example as facade elements, wall cladding or terrace decking.

WPC profiles are mostly produced in a two-stage process. First, the wood flour is mixed with the plastic melt to form a homogeneous blend, then compressed and granulated. Subsequently, it is extruded into endless profiles.

For the production of WPC profiles, almost exclusively counter-rotating twin screw extruders are used. The reason for the widespread use of twin screw extruders, which are substantially more expensive than single screw extruders, are the provision of degassing units as standard, their high throughput rates and better mixing and homogenizing performance.

In single screw extruders, the material transport is effected by the adhesion of the melt to the barrel and screw, which move relative to each other (chain-pulled transport). The lack of degassing facilities is an additional drawback for single screw extrusion of materials containing cellulose fiber and/or hygroscopic components.

Hygroscopicity of wood and WPC compounds

Depending on the temperature and relative humidity of the ambient air, a certain moisture equilibrium is established inside the wood. Through chemisorptions, which takes place primarily at wood humidity rates between 0 and 6%, the water molecules are stored via hydrogen bonds with the hydroxyl groups of the cellulose between the neighboring cellulose chains. In the further course of moisture absorption, at humidity rates from 6 to 15%, the water is stored inside the cell walls primarily by physical sorption.

Capillary condensation takes place mainly at wood moisture rates above 15% until the cell walls are completely saturated with water. The lower the water content, the higher the bond energy of the water stored inside the cell walls.

In spite of the wood particles being covered with plastic, a certain moisture equilibrium corresponding to the ambient climate is still established in WPCs. The storage of dry wood-PVC granulate in dry air (32.7% relative moisture) leads to an increase in the granulate’s water content to 2% within 24 hours. An 84% moisture content of the ambient air causes an increase of the water content to more than 5% over the same period of time.

During WPC extrusion, the water stored inside the wood cell walls evaporates, due to the high processing temperatures. Bubbles and cavities are formed in the end product, especially if there are no degassing facilities. The water bonded at the fiber surface also functions as a separating agent between the cellulose filler and the polymer matrix. Both these factors cause a significant loss of strength in the end product.
Single screw extrusion of granulate with different moisture content levels

At the Institute for Natural Materials Technology (IFA-Tulln, University of Natural Resources and Life Sciences, Vienna/Austria) the effect of water content in WPC single screw extrusion was examined, as well as optimization potentials with an ATON 2 F120 segmented wheel dryer from WITTMANN.

A PVC blend reinforced with 50% wood flour was compounded in a co-rotating conical twin screw extruder, and the granulate was then brought to water contents of 2, 1 and 0.1% respectively. A coextruder was used for the single screw profile extrusion process. The latter was equipped with four barrel heating zones, one adapter and two heating zones for tooling, as well as a standard screw with an L/D ratio of 23.

The granulates with different moisture contents were each extruded with screw speeds of 10 and 60 rev/min into bar profiles (40 × 6 mm).

When using the granulate with the highest moisture content, the resulting steam pressure is so high that the profiles are torn into small pieces. Using granulates with a 1% water content still allows the production of endless profiles, but leads to the formation of a considerable amount of bubbles in the profile cross-section. However, when the granulate is dried to 0.1% moisture content, a good product quality is achieved even at high throughput rates of more than 30 kg/h.

Loss of strength through 1% water

The flexural strength of the profiles produced at low throughput rates is reduced by 28% when using the moist wood-PVC granulate. With higher screw speeds, the effect of the water is even more pronounced. Here, the flexural strength is reduced by 48% when granulate with 1% water content is used. In view of the higher throughput rates which can be reached with simultaneous assurance of good product quality and process reliability, it makes sense to use continuous granulate drying in WPC single screw extrusion. Due to positive past experience, an appliance from the WITTMANN Group was again chosen for this purpose.

The ATON 2 F120 is especially designed for drying plastic granulates at drying temperatures ranging from 80 to 130 °C.

The drying silo has a capacity of 300 l. In contrast to circulating air dryers, this appliance offers consistent drying quality even when the climate of the ambient air changes, thanks to using dry air. The dry air flows upwards through the granulate and is subsequently demoisturized by a desiccant.

Depending on the requirements for drying quality and/or energy efficiency, the dryer can operate either in the segmented wheel mode or in the tower mode.

In the wheel mode, the drying wheel divided into 36 chambers rotates with a constant speed of about one revolution per hour. The return air from the drying silo flows through the chambers and is demoisturized by the desiccant contained therein. In this mode, most of the chambers are involved in the drying process and only few chambers are in the regeneration zone, where the desiccant is regenerated. Part of the air for regeneration comes from the process heating system and thus leads to a higher starting temperature with higher water absorption capacity. In the tower mode, the drying wheel does not rotate continuously but is only turned by several segments after a certain period of time. A major advantage in drying WPCs, which are more sensitive to heat than pure plastics, is the material protection function integrated in the system.

The protection principle is based on the energy consumption of active drying. The temperature of the air flowing back from the drying silo is measured continuously. As soon as the granulate is dry, or absorbs no more energy, the temperature of the return air rises. When the set threshold value is exceeded, the drying temperature inside the silo is lowered to prevent thermal damage to the granulate.

Temperature sensitivity of wood and PVC

Slight thermal degradation can already be observed in wood after it has been exposed to temperatures of 80 to 100 °C for any length of time. But more substantial decomposition only sets in at temperatures above 180 °C. Hemi-
cellulose is the wood component with the lowest temperature resistance of all wood components. A large part of it is rapidly degraded at temperatures of 200 °C. Maximum decomposition of cellulose takes place at temperatures around 280 °C. The thermal decomposition of lignin proceeds in several stages at temperatures between 240 °C and 260 °C.

PVC is very sensitive to higher temperatures. During the thermal decomposition of this material, various degradation products are formed, such as hydrochloric acid. The major part of PVC is decomposed at temperatures between 245 and 370 °C. A thermo-gravimetric analysis (TGA) was carried out on the 50% wood flour-PVC compound to be sure to exclude all technical risks.

At temperatures of up to 180 °C, a 2.5% loss of material mass can be measured, which roughly corresponds to the water content of the sample.

At temperatures below 300 °C, the sample has been degraded by more than 30%, with the highest degradation rate at 280 °C. This loss of mass is mainly due to decomposition of the wood component. At temperatures above 340 °C, the thermal decomposition proceeds much more slowly. At 360 °C, the total loss is a little more than 55%. Only at temperatures of 600 °C was the sample degraded to a residual mass of 5.6%.

A drying temperature of 130 °C is well below the thermal degradation temperatures of the wood-PVC compound tested.

Preparation of drying curves

To optimize the extrusion process in terms of product quality, throughput and energy costs, it is necessary to create a material-specific drying curve.

For this purpose, the dryer was filled with moist wood-PVC granulate and set at drying temperatures of 80 °C and 110 °C. At half-hourly intervals, samples were taken from the bottom part of the dryer to measure the water content. The samples were analyzed by double determination. The results were checked at random by chemical testing as well. The water was extracted from the samples by storing them for more than two weeks in anhydrous methanol. The water content in the resulting extract was subsequently examined in an aliquot according to Karl Fischer. In this titration, sulphur dioxide is oxidized by iodine in the presence of water into sulphuric acid, and the iodine is simultaneously reduced to hydrogen iodide. The endpoint is determined electrometrically. The lower quantization limit is at 50 to 100 ppm. About 2 hours after a water content below 0.1% had been reached, the dryer was turned off, and the moisture gradient measured in layers of 20 kg.

A drying time of just 2 hours at 110 °C reduces the water content of the granulate in the lowest drying layer from above 3.5% to below 0.5%. After four hours, the material has been dried to less than 0.1%. From 270 min drying time onwards, all chemically measured control points show a 0% water content. When the drying temperature is set 30 °C lower, the material is dried from a 4.4% water content down to below 0.5% after three and a half hours. At a drying temperature of 80 °C, it takes a drying time of eight hours to reach a granulate water content below 0.1%, that is almost twice as long as at the higher drying temperature.

The integration of ATON F120 in a continuous single screw WPC extrusion process requires knowledge of the water content in the entire drying silo. According to the measured values, 140 kg of dry granulate with a maximum water content of about 0.1% is available after a drying time of 6 hours at 110 °C. At a drying temperature of 80 °C, there is also a relatively low downward gradient in moisture content. The lowest 80 kg layer inside the drying silo shows a water content below 0.1%.

The integration of an ATON F120 in single screw WPC extrusion enables the production of high-quality profiles with throughputs far above 23 kg/h at 110 °C drying temperature. A drying temperature of 80 °C allows a minimum throughput of 10 kg/h. •
Vignesh: highest quality through WITTMANN

Within a decade of the company’s establishment, Vignesh Polymers emerged as one of the fastest growing organizations in southern India. The company supplies the automotive and appliances industries, producing high-quality injection molded parts for some of the globally most celebrated OEMs.

Ram Kumar

 Highly regarded by its customers, Vignesh Polymers has recently been the proud recipient of numerous awards, including being named Best Vendor by Samsung, and receiving the SQ Certification from Hyundai Motors – just to name a few of the many recent accolades and prizes.

Vignesh Polymers runs two production plants located in Chennai and Goa and operates some 40 injection molding machines ranging from 180 to 1,300 tons. These are equipped with robots, mold temperature controllers, drying and conveying units, and other auxiliaries from the WITTMANN Group.

The founder and CEO of the company, R. B. Sivakumar, a graduate from the Central Institute of Plastics Engineering & Technology (CIPET), is a first generation entrepreneur — ever determined to further develop the company. Relying on his excellent technical skills and working experience in Korea, Taiwan, and for various industries for more than two decades, R. B. Sivakumar points out that “in any process, there will never be a proper output without the right input.”

In today’s competitive world he also insists on the need for state-of-the-art equipment. This should not only outperform competitors, but also be able to harmonize growth plans within the company.

“Our entire infrastructure has been carefully planned out in order to meet the global standards demanded by international manufacturing companies.”

Vignesh Polymers and the WITTMANN Group

He adds that “we want to be seen in the industry as a perfect technical partner for plastic injection molded components. Since most of our components are of highly engineered plastic materials, we sought automation at an early stage. We started working with the WITTMANN Group, purchasing a W828 robot for the automation of a workcell making parts for the white goods sector. This was a really convincing experience, and well-received by our customers. This success encouraged us to keep going with automation. Within a couple of years, we ended up running almost all of our machines with dedicated automation cells. There is perhaps a general assumption in Indian plastics that working with automation costs more than manual operator handling. In the long run we know this not to be the case.”

R. B. Sivakumar says that Vignesh Polymers is constantly looking for innovative production processes. Having learned from its first automation projects, Vignesh Polymers then wanted to go further; handling all sorts of complex components and bringing about the need for EOAT solutions and for flexible robot programming. “The Indian WITTMANN Group team geared up to meet all of Vignesh’s expectations within the shortest time possible. The WITTMANN team equipped our company with customized EOAT and with special programming solutions for the robots”, says R. B. Sivakumar. In addition, key automation features such as SmartRemoval and SoftTorque were highly appreciated and also helped to further shorten the cycle times.

In fact, using WITTMANN automation turned out so well for Vignesh Polymers that the company shifted in favor of a closed-loop molding strategy. The Vignesh business began to purchase other auxiliary equipment from the WITTMANN Group: mold temperature controllers, low speed granulators from the JUNIOR series, material loaders, and a dew-point controlled DRYMAX E300 battery dryer with multiple drying hoppers. And having integrated all of these components, better quality rates were achieved, and manual intervention was decreased.

Future perspectives

R. B. Sivakumar says that the Indian molding industry in general may yet take some time to fully adopt advanced concepts such as Industry 4.0. However, at Vignesh Polymers, the adoption of Industry 4.0 concepts has already begun. Real-time data from all the machines is collected and assessed. Integrated mobile apps help to bring together the status of each machine and its process parameters.

Alarm indications and the efficiency of the entire process can be easily checked; enabling quick decisions and assuring the highest degree of transparency to the company’s customers. This approach gives Vignesh an increasingly competitive edge. This is also one of the reasons why Vignesh Polymers has become a preferred vendor for multinational OEM’s.

R. B. Sivakumar expresses his total satisfaction with the WITTMANN Group’s equipment, and is also looking forward to evaluate WITTMANN BATTENFELD injection molding machines – as part of the company’s equipment in the near future.

Ram Kumar is the Sales Manager for South India of WITTMANN BATTENFELD India Pvt Ltd., the Indian branch of the WITTMANN Group.
Over the years, Simon has acquired several complementary companies, opened new subsidiaries in different countries, and contracted cooperation agreements with other important groups of companies. Thus, the activities of the Simon company have become diverse, and the company has realized substantial growth because of it.

Simon’s expansion

The Simon Group represents one of the most important multinational companies headquartered in Spain, operating in 90 countries worldwide. A family owned business to the present day, currently the 4th generation of the Simon family is leading the enterprise.

The Simon Group’s biggest production facility, with a floor space of 60,000 m², is located in Haian, China, employing a staff of 1,100. The product portfolio ranges from on-off switches (especially collections of light switches) and connection systems for workstations to control systems, interior and exterior lighting, and recharging equipment for electric vehicles. The continuous investment in growth has resulted in more than 3,900 collaborators worldwide, of which 800 are employed in Spain. One in every ten employees is professionally dedicated to R&D. The year 2016 was a very important one for the Simon Group, as the company celebrated its centennial, putting much emphasis on their main aim, which is to remain a family business, and to furthermore set the benchmark with their products wherever these are being used.

Simon’s WITTMANN Group equipment

Over the years, Simon has introduced WITTMANN BATTENFELD equipment into their manufacturing plants to realize the highest possible quality and production efficiency. Today, Simon production equipment includes injection molding machines with different clamping forces, temperature controllers, and material drying and conveying equipment as well as palletizing units. All of this equipment is facilitating the production process and contributing to optimal and efficient results.

One of the special reasons as to why Simon counts on WITTMANN BATTENFELD lies in the production of a 3-element frame as part of a light switch from Simon’s 24 Harmonie collection – a product that is sold on the Moroccan market. In the case of this special part, there were some difficulties to overcome in regard to the execution of the injection process. The visual impression of the molded part suffered heavily from a lack of gloss, and also the burrs could be clearly seen – altogether, the initial outcome was a part that was utterly impossible to be sold. After testing some other approaches, the WITTMANN TEMPRO plus D140...
dual zone temperature controller proved to be the solution. The use of this unit made it possible to bring the gloss of the final part to perfection, and to also eliminate its burrs. In order to come up to a part with a perfect aesthetic appearance free from defects, it is absolutely essential to dry the plastic resin. This was done using a compact WITTMANN DRYMAX E30 dry air dryer. All in all, the successful final outcome was the result of the very close cooperation between the WITTMANN Group and the Simon specialists.

Success through cooperation

The Simon Group – as a multinational company – is constantly investing in the latest manufacturing technologies and production processes. One of many current examples is the latest acquisition of a WITTMANN W818 robot for the company’s production plant in Martorelles near Barcelona.

For many years now, the Simon Group has trusted in robots from WITTMANN and also WITTMANN sprue pickers, automating the processes in different production plants. Finally, this essential cooperation contributed to Simon’s success in the fields of interior and exterior lighting.

Simon is a real reference point for the entire industry in its innovative capacity and the development of new business lines. This is reflected in the fact that Simon continuously patents very many products, leveraging the company’s ability to create new ideas and solutions.
The past twenty years have seen a shift in the attitude and practice of plastics processors to waste – in regard to both their own in-house waste, and also in using plastics recyclate in finished products. Choosing a granulator or particle resizer can be critical to success.

Clearly increased environmental considerations have played a part in these developments. “Green” factors continue to come to the fore. Not only that but plastics processors are also making greater efforts with regard to in-house recycling and material savings.

Plastics processing companies are realizing that they too must also keep up with current social trends.

Many end-user customers today are asking for products that are made from recyclate. Therefore, it makes good business sense to supply them with the same.

Different aspects of granulators

Most processors need a constant quantity of dust-free and high-quality regrind at a constant size. This is the main priority. But there are of course some more important issues: dust sealing, modular equipment design, easy and safe cleaning, efficient and effective power drive design, low noise and compact footprint. Operational safety is also very important.

The WITTMANN Group has therefore developed several industry “firsts” to meet these criteria; WITTMANN granulators produce less noise, save more energy, have a more compact footprint, need less maintenance, are equipped with hardened cutting tools, provide for easy cleaning and maintenance, and also have excellent safety features.

S-Max series granulators

The S-Max series models are specifically designed for the closed-loop recycling of sprues/runners from injection molding machines with up to 300 tons of clamping force. The S-Max is a portable piece of equipment which allows for great versatility and can be moved easily from one molding machine to another. An interface also enables full communication with the injection molding machine.

As an option, a special shutdown-function is available: When the injection molding machine is “off”, the granulator stops automatically, helping saving energy.

Standard features

Many more interesting and advantageous features of the new S-Max Series come as a standard. A high level sensor gives visual and audible alarm if necessary, and is located underneath the cutting chamber, thus avoiding the overfilling of the bin, and also keeping the cutting chamber free from regrind. This position of the sensor brings about some additional advantages: direct wiring to the electrical cabinet, the sensor’s head not being amidst the material, and full inlet capacity of the bin. The swivel outlet pipe can take different positions, making it easier to connect the flexible hose to the hopper loader. This typically allows for a more efficient use of the floor space next to the machine.

The slanted, front cut outlet pipe with adjustable airflow evacuates the regrind more efficiently and also avoids the blocking of the flexible hose. A good access to the cutting chamber is given from above via the 90° tilting hopper to allow an easy perfect cleaning.

<table>
<thead>
<tr>
<th>Feature</th>
<th>S-Max 2</th>
<th>S-Max 2 Plus</th>
<th>S-Max 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutting chamber</td>
<td>240 x 249 mm</td>
<td>240 x 346 mm</td>
<td>240 x 467 mm</td>
</tr>
<tr>
<td>Number of knives</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Motor power</td>
<td>1.1 kW</td>
<td>1.5 kW</td>
<td>2.2 kW</td>
</tr>
<tr>
<td>Rotation speed</td>
<td>27 rpm @ 50 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Throughput</td>
<td>12 kg/h*</td>
<td>20 kg/h*</td>
<td>30 kg/h*</td>
</tr>
<tr>
<td>Regrind size</td>
<td>4 – 5 mm</td>
<td>4 – 5 – 7 mm</td>
<td>4 – 5 – 7 – 10 mm</td>
</tr>
</tbody>
</table>

* Depending on material, shape, density of sprues/parts to be processed, and regrind size.

August 2018 will see the new S-Max granulator models from the WITTMANN Group available for delivery: S-Max 2, S-Max 2 Plus, and S-Max 3. These are low speed granulators for the inline-recycling of sprues made of hard and brittle engineering resins. Depending on the granulator model, a material throughput of 12, 20 or 30 kg/h can be reached.

Denis Metral

is International Product Manager for granulators at WITTMANN BATTENFELD France SAS in Moirans, France.

The S-Max series of screenless granulators
WITTMANN BATTENFELD India pvt Ltd. still growing

Founded in 2007, the Indian WITTMANN Group subsidiary has steadily grown. Today, the company works with a team of 70, serving more than 1,000 customers all over the country.

The recently expanded Chennai headquarters provides 420 m² of office space and 1,320 m² of production and storage area.

As well as being the market leader for robots in the Indian plastics industry, WITTMANN BATTENFELD India is also widely recognized for all other products in the WITTMANN Group portfolio: dryers, conveying systems, and mold temperature controllers. Above that, the company excels in building customized downstream automation and special gripper solutions.

At this year’s Plast India show, WITTMANN BATTENFELD India received the award for the Best Performing Enterprise. Proximity to customers and an all-embracing and prompt service make for short delivery times and a high degree of customer satisfaction. The Indian market still shows a promising future: In the last two years, the Indian branch has grown by 18% annually, not least due to the very strong automotive and white goods markets that themselves are posting growth figures of 20%.

The Indian plastics industry is also further investing and upgrading to better technology and equipment safety, and even, to some extent, to Industry 4.0 concepts. WITTMANN BATTENFELD India has already sold its first injection molding machine with fully integrated robot and temperature controller, a system that also deploys the benefit of WITTMANN 4.0 technology.

Fourth extension of WITTMANN BATTENFELD Mexico

With growth rates well above 20% over the last few years, the Mexican WITTMANN subsidiary has developed into an important location within the group. The year 2017 was no exception, although the prospects for the future were viewed with some skepticism at the beginning of the year, due the strained political relationship with the neighboring USA. However, this skepticism proved groundless within a very short time, and Mexican investment activities continued unabated throughout the whole year.

The WITTMANN subsidiary in Mexico was established in the centrally located Mexican city of Querétaro exactly 20 years ago and has grown steadily ever since. In this anniversary year too, its headquarters are now being extended for the fourth time by 950 m² to a total of more than 3,000 m² floor space. The present extension is dedicated specifically to the office facilities to provide sufficient space for the now more than 75 staff members. The Mexican subsidiary offers the complete service portfolio to local customers – from quoting and project planning to commissioning. A training center has also been established at the headquarters of WITTMANN BATTENFELD México, equipped with a servo-hydraulic SmartPower and an all-electric EcoPower machine. Robots from the W8 series for training and programming purposes are available too, together with peripherals for temperature control, drying, materials handling and blending, as well as granulators for demonstration purposes. To meet the rising demand for automation equipment, WITTMANN BATTENFELD México already started several years ago to build up its own local automation group. Apart from the Querétaro headquarters, WITTMANN has established additional sales and service facilities over the years in México City, Guadalajara, Monterrey, Reynosa, Chihuahua, Ciudad Juarez and Tijuana. This ensures complete coverage of all plastics processing companies located anywhere in Mexico.

The CEO of WITTMANN BATTENFELD México, Mr. Rodrigo Munoz, comments: “The extension was started in February of this year and will be completed on schedule in July. Of course, WITTMANN BATTENFELD México will celebrate the official opening with its customers on completion.”